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INTRODUCTION 

IT HAS been shown that the one-dimensional approach is 
convenient, but may be in error for certain physical con- 
ditions [l-g]. Further, some papers [9-l I] present the opti- 
mization of the fin heat transfer with respect to its geometry 
or its weight for the same one-dimensional conditions. All 
of these approaches are questionable when the convection 
coefficients of the fin surfaces are not equal and the root 
temperature is not constant. 

This study produced an optimization procedure for the 
heat loss from a rectangular fin as a function of the fin ratio, 
L, when the root temperature is 2’ = Z’, +a COP (xY’/;?d) and 
the convection coefficients, hi, of all surfaces are constant 
but not equal (note that T, and a are constant and the 
subscript, i, is l-top, 2-bottom, and %--tip). Of particular 
importance in this development is the relationship between 
the ratio L for 0.99(Q/kt?,),, and the fin’s usefulness. The 
analysis is based upon the usual assumptions [ 121 (i.e. con- 
stant properties, steady state, no heat sources, and Newton’s 
law is valid). Finally, in describing the convection charac- 
teristics, the Biot number, B, will be used rather than the 
convection coefficient, with the restrictions that (1) 
0$B2~5:,~1,and(2)8,=0.01andl.0. 

TWO-DIMENSIONAL ANALYSIS 

For a two-dimensional r&angular fin with constant physi- 
cal properties, the first law of thermodynamics for con- 
duction is 

x!+!?!=. 
aYz 

(1) 

where 0 = T-T,, B0 = T,,- jr,, L = C/t, x = x’/l and 
Y = Y’// (see Fig. 1). 

The corresponding boundary conditions are, for all Y 

=Y x=0 e=6,+acos” - 
0 2 

and 

x = L ax ~+,o=o 3 

and, for all x 

(2) 

Y=I E+B,B=O and 
aY 

y= -1 ;-&+a (3) 

where 8, = hJ/k, i = 1,2,3 and k is the thermal conductivity. 
As described in ref. [S], the solution to equation (I) is 

6 = Cf,(Y)f*(W!Wn (4) 

and the heat lost per fin width in this two-dimensional case 
is 

~=Jl[-kZj,=, .I, dy = -2/c&, E f,nk, sin (I+,,) (5) 

FIG. 1. Geometry of a thermally asymmetric, constant 
cross-sectional area, rectangular fin where T(root) = 

T, + a cos” (?rY’/ze). 

where 

fi (Y) = cos (LY) +A, sin (&Y) 

&(x) = cash (I,x) +fn sinh (,I& 

fn=- 
B, + ,I,, tanh (&L) 
ii, I- & tanh (&,t) 

Iv,, = D,(l fb) 

(6) 

(7) 

(9) 

N,,, = D, I + -$~cot (d,) 
I 

(10) 
n 

(12) 
2 sin (I,) 

A =&tan(&)-& - & tan (A,) +B, 

’ &+BI tan (A,) = i,+ B2 tan (&y 
(14) 

and ,I, are the eigenvalues obtained from equation (14). The 
variations of this solution with the various parameters have 
been discussed previously [S] and will not be repeated here. 

In order to determine the ratio L, which produces the 
limiting value of heat loss, 

dQ 
;iz = 0. (15) 

The result of this optimization is 

“z, N,,fd, sin (&) sech* (&L) = 0 (16) 
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FIG. 2. Heat loss, Q/I&,, from a fin vs the fin ratio, L, for B, = 0.01, and b = 0.25 for various values of 
B,andm=l(---)andm=3(----):(a)B,=Oand(b)&=O.Ol. 

where 

U4-B:) 
“’ = [&+B, tanh (&L)li (17) 

Equation (16) will be satisfied as L approaches infinity ; then 
tanh (&L) + 1 and f, -+ - 1 (see equation (8)). Thus, the 
maximum or minimum value of the heat loss from the fin is 
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FIG. 3. Optimum fin ratio, L, for O.~(Q~~~~)~~ dependent An alternate procedure for presenting the data of Fig. 2 is 
upon BJB, and B, (when B, = 0.01, b = 0.25 and m = 1). shown as Fig. 3. The selection and presentation of them = 1 

To determine whether the limiting Q is a maximum or 
minimum value, the second derivative is used. Then 

d’Q dLi = 2kOo i d,(B: - A,$V,,,,, sin (A,) 
!I=, 

(19) 

where 

The maximum value of Q as L approaches infinity (Q& 
would occur when equation (19) is less than zero. Further, 
when this equation is greater than zero, emin, occurs as L 
approaches infinity. A special case results for L = 0 (the ‘no 
fin’ case). For that condition J, = -I?,/& and 

(21) 

B,, in this case, is interpreted as the coe&cient of the wall, 
&. 

RESULTS 

Traditionally, from a one-dimensional analysis, a Biot 
number of 0.01 would indicate that a fin is more than justi- 
fied. The results of this two-dimensional analysis for B, equal 
0.01 are presented in Fig. 2. Note that in both cases the heat 
loss increases for small values of B, until J13 reaches a certain 
value for which the heat loss is essentially independent of L. 
Above this value of I&, the heat loss decreases as L increases. 
Also, as the value of B, increases, the value of B,, which 
makes the heat loss decrease as the 2, increases, becomes 
larger. Finally, these figures show that the difference between 
Q/k& (m = 1) and Q/k@@ (m = 3) increases as L increases 
but the curves have the same trend. 
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FIG. 4. Heat loss, Q/k@, from a fin vs fin ratio, L, for B, = I, and b = 0.25 for various values of B3 and 
m = I(-) and m = 3(----) : (a) & = 0 and (b) Bz = 0.5. 

case will not limit applicability of the results and conclusions 
since the information available from Fig. 3 is independent of 
M. Further, L for 0.99(Q/ke,),,, is used instead of (Q/k0&, 
as a matter of convenience because L must be so much longer 
to get that last 1%. Note that when the values of B, are 
small, L for 099(Q/U&),,, decreases monotonically as the 
ratio of EJB, increases until B3 approaches a certain value 
for which the curve varies irregularly. This irregular charac- 
ter begins, for the B, = 0.01 case, when the value of B, is 
between 0.05 and 0.06. 
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FIG. 5. Optimum fin ratio, L, for 0.99(Q/k&J_ dependent 
upon l&/B, and B3 (when B, = 1.0 and 6 = 0.25). 

Figure 4 depicts the same type of information as was 
presented in Fig. 2 but for B, = 1 (traditionally 3 = 1 indi- 
cates that a fin is not justified). Most notable in this figure is 
that the effect of B, on the heat loss disappears when L is 
approximately 5. 

The alternate version of these data is illustrated in Fig. 5. 
The trend of these curves is similar to the B, = 0.01 case for 
small vale of B,. Note that the B, = 1 case does have certain 
limited situations where the Iin is justified. The difference is 
that in all cases L for 0.99(Q~~ff~)~~~ is much shorter when 
compared with the B, = 0.01 case. Further, the irregular 
character begins when B, is between 0.4 and 0.45 and as 3, 
approaches 1, L = O.~(Q/~~~)~= is almost zero for all values 
of B,/B, (i.e. (Q/~e~)_ occurs at L = 0). 

The interpretation of the data where the irregular variation 
occurs (0.5 < B3 < 0.9 in Fig. 5) requires further discussion. 
If the irregularity is generally upward, Table 1 must be used 
to determine the fin’s usefulness. Table 1 lists the approxi- 
mate value of B, (= Bw) which makes the heat loss in the 
no-fin case larger than that in the infinite length case for 
given B, and Bz. Thus, from Table 1, we can estimate the fin’s 
usefulness for given values of B,, BZ and B,. For example, in 
the B, = 0.01 case of Fig. 3 and B, = 0.082, using Table 1 we 
see that B, = 0.082 is between B, = 0.0787 for &/B, = 0.25 
and B, = 0.0863 for BJB, = 0.5. Thus, the fin is useful for 
B,/B, z 0.359 and not useful for B2/B, < 0.359. 

CONCLUSIONS 

From these results, we can conclude the following : 

(I) even though the difference in the values of Q//CO, 
(m = 1) and Q/k&, (m = 3) increases as L increases, the 
trends are the same; thus the resulting conclusions for vari- 
ous m would be approximately the same ; 

(2) when d2Q/dL2 is almost zero, the heat loss from the 
tin is essentially independent with the fin ratio ; 

(3) plots of L for 0.99(Q,,,,/k@ vs B,/B, with B3 as the 
parameter is a convenient means of determining fin use- 
fulness ; thus for given values of B, : 
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Table I. Values of B3 which makes the heat loss in case of 2. L. C. Burmeister, Triangular fin performance by the heat 
no-tin larger than that in the case of a fin of infinite length balance integral method, ASME J. Heat Transfkr 101, 

for given values of B, and & 562-564 (1979). 
3. R. K. Irey, Errors in the one-dimensional fin solution, 

B, for ASMEJ. Heat Transfer 90, 175-116 (1968). 
4. H. H. Keller and E. V. Somers, Heat transfer from an 

BrIB, B, = 0.01 B, = 0.1 6, = 1 annular fin of constant thickness, ASME J. Heat Trans- 
fer 81,151-l% (1959). 

0 0.0704 0.2162 0.5854 5. 
0.25 0.0787 0.2438 0.6934 
0.5 0.0863 0.2678 0.7702 

0.75 0.0932 0.2893 0.8301 6. 
I 0.0996 0.3087 0.8796 

(a) if L for 0.99(~/~6~)~~ decreases monotonically as the 
ratio of &/B, increases, then the fin is useful for ail given 
values of BI and B2 ; 8. 

(b) if L for 0.99(Q/k&),,, varies irregularly as the ratio 
of B,/B, increases, then a check using Table I must be made 
to determine the fin’s usefulness ; 

(c) if L for 0.99(Q/k0,),,, is nearly zero as the ratio of 9. 
Bz/B, increases, then the fin is not useful for all values of Bt 
and 3,. 

10. 
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INTRODUCTION 

IN THIS paper, the effect of thermal-diffusion and diffusion- 
therm0 on transient and steady natural convection heat and 
mass transfer from a vertical surface are investigated numeri- 
cally. A helium-air mixture was selected as the fluid pair 
used in the study due to its radically different thermodyna~c 
properties as compared to other fluid pairs. Results showing 
steady temperature and concentration distributions and the 
total heat and mass transport from the wall with and without 
heat and mass transfer coupling are presented. Also, the 
transient variation of the heat flux from the wall including 

t To whom correspondence should be addressed. 

and neglecting the coupling effects are documented. 
The effect of diffusion-therm0 and thermal-diffusion on 

the transport of heat and mass were developed from the 
kinetic theory of gases by Chapman and -Cowling [I]. 
Wirshfelder et al. 121 exulained the nhenomena and derived 
the necessary for&lae‘ to calcufate the the~ai-diffusion 
coefficient and the thermal-diffusion factor for monatomic 
gases. Although the derivation is restricted to monatomic 
gases, they found that the error involved with applying the 
formulae to polyatomic gas mixtures is small. 

Hall [3] developed the energy, diffusion and momentum 
equations for multicomponent systems. He further simplified 
the equations of motion, energy and diffusion for a steady 
compressible, boundary layer flow of a binary mixture over 
a flat plate. 


